Get Math Help

GET TUTORING NEAR ME!

By submitting the following form, you agree to Club Z!'s Terms of Use and Privacy Policy

    Q-extension

    Definition

    A q-analog, also called a q-extension or q-generalization, is a mathematical expression parameterized by a quantity q that generalizes a known expression and reduces to the known expression in the limit q->1^-. There are q-analogs of the factorial, binomial coefficient, derivative, integral, Fibonacci numbers, and so on. Koornwinder, Suslov, and Bustoz, have even managed some kind of q-Fourier analysis. Note that while European writers generally prefer the British spelling "q-analogue", American authors prefer the shorter "q-analog" (Andrews et al. 1999, pp. 490 and 496). To avoid this ambiguity (as well as the pitfall that there are sometimes more than just a single q-analog), the term q-extension (Andrews et al. 1999, pp. 483, 485, 487, etc.) may be preferable.

    Find the right fit or it’s free.

    We guarantee you’ll find the right tutor, or we’ll cover the first hour of your lesson.