The Meijer G-function is a very general function which reduces to simpler special functions in many common cases. The Meijer G-function is defined by G_(p, q)^(m, n)(x|a_1, ..., a_p b_1, ..., b_q) congruent 1/(2π i) integral_(γ_L) ( product_(j = 1)^m Γ(b_j - s) product_(j = 1)^n Γ(1 - a_j + s))/( product_(j = n + 1)^p Γ(a_j - s) product_(j = m + 1)^q Γ(1 - b_j + s)) x^s d s, where Γ(s) is the gamma function . A different but equivalent form is used by Prudnikov et al. (1990, p. 793), G_(p, q)^(m, n)(x|a_1, ..., a_p b_1, ..., b_q) congruent 1/(2π i) integral_(γ_L) ( product_(j = 1)^m Γ(b_j + s) product_(j = 1)^n Γ(1 - a_j - s))/( product_(j = n + 1)^p Γ(a_j + s) product_(j = m + 1)^q Γ(1 - b_j - s)) x^(-s) d s, This form provides more consistency with the definition of this function via an inverse Mellin transform.
We guarantee you’ll find the right tutor, or we’ll cover the first hour of your lesson.