The G-transform of a function f(x) is defined by the integral (G f)(x) = (G_(p q)^(m n) left bracketing bar (a_p) (b_q) right bracketing bar f(t))(x) =1/(2π i) integral_σ Γ[(b_m) + s, | 1 - (a_n) - s (a_p^(n + 1)) + s, | 1 - (b_q^(m + 1)) - s]×f^*(s) x^(-s) d s, where G_(p q)^(m n) is the Meijer G-function, Γ[(b_m) + s, | 1 - (a_n) - s (a_p^(n + 1)) + s, | 1 - (b_q^(m + 1)) - s] =Γ[b_1 + s, | ..., | b_m + s, | 1 - a_1 - s, | ..., | 1 - a_n - s a_(n + 1) + s, | ..., | a_p + s, | 1 - b_(m + 1) - s, | ..., | 1 - b_q - s] =( product_(j = 1)^m Γ(b_j + s) product_(j = 1)^n Γ(1 - a_j - s))/( product_(j = n + 1)^p Γ(a_j + s) product_(j = m + 1)^q Γ(1 - b_j - s)),
We guarantee you’ll find the right tutor, or we’ll cover the first hour of your lesson.