A finite simple group of Lie-type. The following table summarizes the types of twisted Chevalley groups and their respective orders. In the table, q denotes a prime power and the superscript denotes the order of the twisting automorphism. group | order ^3 D_4(q) | q^12(q^2 - 1)(q^8 + q^4 + 1)(q^6 - 1) ^2 F_4(2^(2n + 1)) (n>0) | (2^(2n + 1))^12(2^(2n + 1) - 1)((2^(2n + 1))^3 + 1)((2^(2n + 1))^4 - 1)((2^(2n + 1))^6 + 1) ^2 F_4 (2)' | 2^11·3^4·5·11 ^2 G_2(3^(2n + 1)) (n>0) | (3^(2n + 1))^3(3^(2n + 1) - 1)((3^(2n + 1))^3 + 1) ^2 G_2(3) | 2^3·3^2·7 ^2 B_2(2^(2n + 1)) (n>0) | (2^(2n + 1))^2(2^(2n + 1) - 1)((2^(2n + 1))^2 + 1)
We guarantee you’ll find the right tutor, or we’ll cover the first hour of your lesson.