Get Math Help

GET TUTORING NEAR ME!

By submitting the following form, you agree to Club Z!'s Terms of Use and Privacy Policy

    Prime Counting Function

    Plots

    Plots

    Plots

    Plots

    Plots

    Limit

    lim_(x->-∞) π(x) = 0

    Alternative representations

    π(x) = sum_(i=1)^n 1 for p_n<=x<p_(1 + n)

    π(x) = sum_(k=1)^floor(x) θ(x - p_k) for (p_k element P and x element R and x>=0)

    π(x) = ( sum_(k=2)^floor(x) floor(ϕ(k)/(-1 + k)) = sum_(k=2)^floor(x) floor(ϕ(k)/(-1 + k)))

    π(x) = - sum_(k=1)^floor(log(2, x)) μ(k) sum_(n=2)^floor(x^(1/k)) floor(x^(1/k)/n) μ(n) Ω(n)

    Series representations

    π(x) = sum_(i=1)^n 1 for p_n<=x<p_(1 + n)

    π(x) = sum_(k=1)^x( piecewise | 1 | k element P
0 | otherwise) for (x element Z and x>0)

    π(x) = -1 + sum_(k=3)^x((-2 + k)! - k floor(((-2 + k)!)/k)) for (x element Z and x>3)

    Integral representation

    π(x) = -1 + x - 1/(2 π) integral_0^(2 π) ( sum_(m=1)^x cos(t product_(k=1)^(-1 + m) product_(j=1)^(-1 + m)(j k - m))) dt for (x element Z and x>0)

    Find the right fit or it’s free.

    We guarantee you’ll find the right tutor, or we’ll cover the first hour of your lesson.