Get Math Help

GET TUTORING NEAR ME!

By submitting the following form, you agree to Club Z!'s Terms of Use and Privacy Policy

    Ideal Radical

    Definition

    The radical of an ideal a in a ring R is the ideal which is the intersection of all prime ideals containing a. Note that any ideal is contained in a maximal ideal, which is always prime. So the radical of an ideal is always at least as big as the original ideal. Naturally, if the ideal a is prime then r(a) = a. Another description of the radical r(a) is r(a) = {x:x^n element a for some integer n>0}.

    Find the right fit or it’s free.

    We guarantee you’ll find the right tutor, or we’ll cover the first hour of your lesson.