Get Math Help

GET TUTORING NEAR ME!

By submitting the following form, you agree to Club Z!'s Terms of Use and Privacy Policy

    Axiom of Choice

    Definition

    An important and fundamental axiom in set theory sometimes called Zermelo's axiom of choice. It was formulated by Zermelo in 1904 and states that, given any set of mutually disjoint nonempty sets, there exists at least one set that contains exactly one element in common with each of the nonempty sets. The axiom of choice is related to the first of Hilbert's problems. In Zermelo-Fraenkel set theory (in the form omitting the axiom of choice), Zorn's lemma, the trichotomy law, and the well ordering principle are equivalent to the axiom of choice. In contexts sensitive to the axiom of choice, the notation "ZF" is often used to denote Zermelo-Fraenkel without the axiom of choice, while "ZFC" is used if the axiom of choice is included.

    Find the right fit or it’s free.

    We guarantee you’ll find the right tutor, or we’ll cover the first hour of your lesson.