Get Math Help

GET TUTORING NEAR ME!

By submitting the following form, you agree to Club Z!'s Terms of Use and Privacy Policy

    Cholesky Decomposition

    Usage

    CholeskyDecomposition[m] gives the Cholesky decomposition of a matrix m.

    Basic examples

    Compute the Cholesky decomposition of a 2×2 real matrix:
In[1]:=CholeskyDecomposition[(2 | 1
1 | 2)]
Out[1]={{sqrt(2), 1/sqrt(2)}, {0, sqrt(3/2)}}
Verify the decomposition:
In[2]:=ConjugateTranspose[%].%//MatrixForm
Out[2]=(2 | 1
1 | 2)
The original matrix is positive definite:
In[3]:=PositiveDefiniteMatrixQ[(2 | 1
1 | 2)]
Out[3]=True
Compute the Cholesky decomposition of a 3×3 complex Hermitian matrix:
In[1]:=CholeskyDecomposition[(2.41 + 0. i | -2.47 - 1.92 i | 1.11 + 2.2 i
-2.47 + 1.92 i | 6.25 + 0. i | -4.12 - 1.35 i
1.11 - 2.2 i | -4.12 + 1.35 i | 3.43 + 0. i)]//MatrixForm
Out[1]=(1.55366 + 0. i | -1.58688 - 1.23724 i | 0.714598 + 1.41639 i
0. + 0. i | 1.48414 + 0. i | -0.829623 + 0.010836 i
0. + 0. i | 0. + 0. i | 0.478266 + 0. i)
The result is upper triangular:
In[2]:=UpperTriangularMatrixQ[%]
Out[2]=True

    Option

    TargetStructure

    Relationships with other entities

    Andre-Louis Cholesky

    LUDecomposition | LinearSolve | LinearSolveFunction | FindMinimum | PseudoInverse | QRDecomposition | HermitianMatrixQ | PositiveDefiniteMatrixQ

    Relationships with other entities

    History

    introduced in Version 5 (June 2003)
last modified in Version 14 (December 2023)

    Find the right fit or it’s free.

    We guarantee you’ll find the right tutor, or we’ll cover the first hour of your lesson.