Get Math Help

GET TUTORING NEAR ME!

By submitting the following form, you agree to Club Z!'s Terms of Use and Privacy Policy

    CW-complex

    Definition

    A CW-complex is a homotopy-theoretic generalization of the notion of a simplicial complex. A CW-complex is any space X which can be built by starting off with a discrete collection of points called X^0, then attaching one-dimensional disks D^1 to X^0 along their boundaries S^0, writing X^1 for the object obtained by attaching the D^1s to X^0, then attaching two-dimensional disks D^2 to X^1 along their boundaries S^1, writing X^2 for the new space, and so on, giving spaces X^n for every n. A CW-complex is any space that has this sort of decomposition into subspaces X^n built up in such a hierarchical fashion (so the X^ns must exhaust all of X). In particular, X^n may be built from X^(n - 1) by attaching infinitely many n-disks, and the attaching maps S^(n - 1)->X^(n - 1) may be any continuous maps. The main importance of CW-complexes is that, for the sake of homotopy, homology, and cohomology groups, every space is a CW-complex. This is called the CW-approximation theorem. Another is Whitehead's theorem, which says that maps between CW-complexes that induce isomorphisms on all homotopy groups are actually homotopy equivalences.

    Find the right fit or it’s free.

    We guarantee you’ll find the right tutor, or we’ll cover the first hour of your lesson.