Get Math Help

GET TUTORING NEAR ME!

By submitting the following form, you agree to Club Z!'s Terms of Use and Privacy Policy

    Logistic Map

    Logistic map

    x_n+1 = r x_n (1 - x_n) (n = (0, 1, 2, ...))

    Input values

    parameter r | 4
initial condition x_0 | 0.1

    Iterates

    n | 0 | 1 | 2 | 3 | 4
x_n | 0.10000 | 0.36000 | 0.92160 | 0.28901 | 0.82194

    Iterates

    Closed form solution

    x_n = sin^2(2^(n - 1) cos^(-1)(1 - 2 x_0))≈sin^2(0.321751 2^n)

    Cobweb diagram

    
(lines successively connect the first 50 iterates and the dashed line y = x)

    Bifurcation diagram

    
(iterates 100 through 150 for each r)

    Zoomed in:

(iterates 300 through 450 for each r)

    Possible limit cycles for this choice of parameter

    period | iterates | linear stability
1 | 0 | unstable
1 | 0.75 | unstable
2 | 0.345492, 0.904508 | unstable
3 | 0.116978, 0.413176, 0.969846 | unstable
3 | 0.188255, 0.61126, 0.950484 | unstable
4 | 0.0337639, 0.130496, 0.453866, 0.991487 | unstable
4 | 0.0432273, 0.165435, 0.552264, 0.989074 | unstable
4 | 0.277131, 0.801317, 0.636831, 0.925109 | unstable

    Invariant density

    
(20000 iterates; bin width 0.005)

    Perturbed trajectories

           
(initial perturbation 1×10^-6)

    Lyapunov exponent

    λ≈0.693

    Plot of the Lyapunov exponent vs. r

    Plot of the Lyapunov exponent vs. r

    Find the right fit or it’s free.

    We guarantee you’ll find the right tutor, or we’ll cover the first hour of your lesson.