Get Math Help

GET TUTORING NEAR ME!

By submitting the following form, you agree to Club Z!'s Terms of Use and Privacy Policy

    Hexagonal Close Packing

    Image

    Image

    Lattice invariants

    dimension | 3
minimal squared norm | 1
smallest vectors | (1 | 0 | 0) | (-1 | 0 | 0) | (1/2 | sqrt(3)/2 | 0) | (1/2 | -sqrt(3)/2 | 0) | (-1/2 | sqrt(3)/2 | 0) | (-1/2 | -sqrt(3)/2 | 0) | (0 | -1/sqrt(3) | sqrt(2/3)) | (0 | -1/sqrt(3) | -sqrt(2/3)) | (1/2 | 1/(2 sqrt(3)) | sqrt(2/3)) | (1/2 | 1/(2 sqrt(3)) | -sqrt(2/3)) | (-1/2 | 1/(2 sqrt(3)) | sqrt(2/3)) | (-1/2 | 1/(2 sqrt(3)) | -sqrt(2/3))
kissing number | 12

    Lattice-packing invariants

    packing radius | 1/2 = 0.5
covering radius | 1/sqrt(2)≈0.707107
density | π/(3 sqrt(2))≈0.74048
center density | 1/(4 sqrt(2))≈0.176777
volume | 1/sqrt(2)≈0.707107

    Quadratic form and theta series

    theta series (closed series) | 1/2 ϑ_2(0, e^((8 i π x)/3)) (ϑ_2(0, e^((2 i π x)/3)) ϑ_2(0, e^(2 i π x)) + ϑ_3(0, e^((2 i π x)/3)) ϑ_3(0, e^(2 i π x))) + (ϑ_3(0, e^((8 i π x)/3)) - 1/2 ϑ_2(0, e^((8 i π x)/3))) (ϑ_2(0, e^(2 i π x)) ϑ_2(0, e^(6 i π x)) + ϑ_3(0, e^(2 i π x)) ϑ_3(0, ... (2 terms)))

    Find the right fit or it’s free.

    We guarantee you’ll find the right tutor, or we’ll cover the first hour of your lesson.