Get Math Help

GET TUTORING NEAR ME!

By submitting the following form, you agree to Club Z!'s Terms of Use and Privacy Policy

    Cubic Close Packing

    Image

    Image

    Common name

    fcc

    Description of lattice

    basis | (-1 | -1 | 0) | (1 | -1 | 0) | (0 | 1 | -1)
Gram matrix | (2 | 0 | -1
0 | 2 | -1
-1 | -1 | 2)

    Lattice invariants

    dimension | 3
determinant | 4
minimal squared norm | 2
kissing number | 12

    Lattice-packing invariants

    packing radius | 1/sqrt(2)≈0.707107
covering radius | 1
density | π/(3 sqrt(2))≈0.74048
center density | 1/(4 sqrt(2))≈0.176777
Hermite invariant | 2^(1/3)≈1.25992
thickness | (2 π)/3≈2.0944
volume | 2

    Quadratic form and theta series

    quadratic form | 2 x^2 - 2 x z + 2 y^2 - 2 y z + 2 z^2
theta series (closed series) | 1/2 (ϑ_3(0, e^(i π x))^3 + ϑ_4(0, e^(i π x))^3)

    More properties

    number of symmetries | 48

    Common properties

    even | integral | nonunimodular

    Crystallographic properties

    lattice system | cubic
crystal system | cubic
crystal family | cubic
required point group symmetry | 4 3-fold rotation axes
point groups | 5
space groups | 36

    Point groups

    crystal class | Schönflies | Hermann-Mauguin
tetartoidal | T | 23
diploidal | T_h | m3^_
gyroidal | O | 432
tetrahedral | T_d | 4^_3m
hexoctahedral | O_h | m3^_m

    Space groups

    crystal class | IUCr number | Hermann-Mauguin
tetartoidal | 195 | F23
diploidal | 200 | 201 | Fd3^_ | Fm3^_
gyroidal | 207 | 208 | F4132 | F432
tetrahedral | 215 | 216 | F43c^_ | F43m^_
hexoctahedral | 221 | 222 | 223 | 224 | Fd3c^_ | Fd3m^_ | Fm3c^_ | Fm3m^_

    Find the right fit or it’s free.

    We guarantee you’ll find the right tutor, or we’ll cover the first hour of your lesson.