Get Math Help

GET TUTORING NEAR ME!

By submitting the following form, you agree to Club Z!'s Terms of Use and Privacy Policy

    Axis of Symmetry of a Parabola

    Result

    line | through (f_x, f_y)
through (v_x, v_y)
(assuming focus (f_x, f_y) and vertex (v_x, v_y))

    Visual representation

    
(drawn with rotation angle 0°)

    Equation forms

    y = (x (f_y - v_y))/(f_x - v_x) + (-f_y v_x + f_x v_y)/(f_x - v_x)

    y - f_y = ((x - f_x) (f_y - v_y))/(f_x - v_x)

    y (f_x - v_x) + f_y v_x - f_x v_y + x (v_y - f_y) = 0
(assuming focus (f_x, f_y) and vertex (v_x, v_y))

    Properties of axis of symmetry

    x-intercept | (f_y v_x - f_x v_y)/(f_y - v_y)
y-intercept | (f_x v_y - f_y v_x)/(f_x - v_x)
slope | (f_y - v_y)/(f_x - v_x)
(assuming focus (f_x, f_y) and vertex (v_x, v_y))

    Distance

    from (f_x, f_y) to (v_x, v_y): sqrt((f_x - v_x)^2 + (f_y - v_y)^2)

    Midpoint

    between (f_x, f_y) and (v_x, v_y): (1/2 (f_x + v_x), 1/2 (f_y + v_y)) = (0.5 (f_x + v_x), 0.5 (f_y + v_y))

    Find the right fit or it’s free.

    We guarantee you’ll find the right tutor, or we’ll cover the first hour of your lesson.