The W-transform of a function f(x) is defined by the integral (W f)(x) = (W_(p q)^(m n) left bracketing bar ν, (α)_p (β_q) right bracketing bar f(t))(x) = 1/(2π i) integral_σ Γ(ν - i x - s, ν + i x - s) Γ[(β_m) + s, | 1 - (α_n) - s (α_p^(n + 1)) + s, | 1 - (β_q^(m + 1)) - s] f^*(1 - s) d s, where Γ[(β_m) + s, | 1 - (α_n) - s (α_p^(n + 1)) + s, | 1 - (β_q^(m + 1)) - s] = Γ[β_1 + s, | ..., | β_m + s, | 1 - α_1 - s, | ..., | 1 - α_n - s α_(n + 1) + s, | ..., | α_p + s, | 1 - β_(m + 1) - s, | ... | 1 - β_q - s] = ( product_(j = 1)^m Γ(β_j + s) product_(j = 1)^n Γ(1 - α_j - s))/( product_(j = n + 1)^p Γ(α_j + s) product_(j = m + 1)^q Γ(1 - β_j - s)),
We guarantee you’ll find the right tutor, or we’ll cover the first hour of your lesson.