The radical circle of the Neuberg circles has circle function l = (a^2 b^4 - b^4 c^2 + a^2 c^4 - b^2 c^4)/(b c(a^2 b^2 + a^2 c^2 + b^2 c^2)), which does not correspond to any Kimberling center. The corresponding center is α_194 = (a^2 b^2 + a^2 c^2 - b^2 c^2)/a, corresponding to Kimberling center X_194, and its radius is R_R = sqrt(f(a, b, c))/(a^2 b^2 + a^2 c^2 + b^2 c^2), where f(a, b, c) = a^6 b^4 + a^4 b^6 - 2a^6 b^2 c^2 + a^4 b^4 c^2 - 2a^2 b^6 c^2 + a^6 c^4 + a^4 b^2 c^4 + a^2 b^4 c^4 + b^6 c^4 + a^4 c^6 - 2a^2 b^2 c^6 + b^4 c^6.
We guarantee you’ll find the right tutor, or we’ll cover the first hour of your lesson.