Get Math Help

GET TUTORING NEAR ME!

By submitting the following form, you agree to Club Z!'s Terms of Use and Privacy Policy

    Lommel Differential Equation

    Lommel differential equation (common versions)

    z^2 w''(z) + z w'(z) + (z^2 - ν^2) w(z) = z^(μ + 1) for (w(z) = c_1 J_ν(z) + c_2 Y_ν(z) + LommelS1(μ, ν, z) and LommelS1(μ, ν, z) = (_1 F_2(1;1/2 (3 + μ + ν), 1/2 (3 + μ - ν);-z^2/4) z^(μ + 1))/((μ + 1)^2 - ν^2) and (not (1/2 (-3 - μ - ν) element Z and 1/2 (-3 - μ - ν)>=0 and 1/2 (-3 - μ + ν) element Z and 1/2 (-3 - μ + ν)>=0)))
z^2 w''(z) + z w'(z) + (z^2 - ν^2) w(z) = z^(μ + 1) for (w(z) = c_1 J_ν(z) + c_2 Y_ν(z) + LommelS2(μ, ν, z) and LommelS2(μ, ν, z) = (_1 F_2(1;1/2 (3 + μ + ν), 1/2 (3 + μ - ν);-z^2/4) z^(μ + 1))/((μ + 1)^2 - ν^2) + (0F1(1 - ν, -z^2/4) (2^(-1 + μ + ν) Γ(ν) Γ(1/2 (1 + μ + ν))))/(z^ν Γ(1/2 (1 - μ + ν))) + (0F1(1 + ν, -z^2/4) (2^(-1 + μ - ν) z^ν Γ(-ν) Γ(1/2 (1 + μ - ν))))/Γ(1/2 (1 - μ - ν)) and (not (1/2 (-3 - μ - ν) element Z and 1/2 (-3 - μ - ν)>=0 and 1/2 (-3 - μ + ν) element Z and 1/2 (-3 - μ + ν)>=0 and ν element Z)))
z^2 w''(z) + z w'(z) + (z^2 - ν^2) w(z) = z^(μ + 1) for (w(z) = c_1 J_ν(z) + c_2 Y_ν(z) + LommelS1(μ, ν, z) and LomSmelS1(μ, ν, z) = (_1 F_2(1;1/2 (3 + μ + ν), 1/2 (3 + μ - ν);-z^2/4) z^(μ + 1))/((μ + 1)^2 - ν^2) and (not (1/2 (-3 - μ - ν) element Z and 1/2 (-3 - μ - ν)>=0 and 1/2 (-3 - μ + ν) element Z and 1/2 (-3 - μ + ν)>=0)))

    Find the right fit or it’s free.

    We guarantee you’ll find the right tutor, or we’ll cover the first hour of your lesson.