The orthogonal polynomials defined by h_n^(α, β)(x, N) = ((-1)^n (N - x - n)_n (β + x + 1)_n)/(n!) ×_3 F_2(-n, - x, α + N - x N - x - n, - β - x - n;1) = ((-1)^n (N - n)_n (β + 1)_n)/(n!) ×_3 F_2(-n, - x, α + β + n + 1 β + 1, 1 - N;1), where (x)_n is the Pochhammer symbol and _3 F_2(a, b, c;d, e;z) is a generalized hypergeometric function. The first few are given by h_0^(α, β)(x, N) | = | 1 h_1^(α, β)(x, N) | = | x(α + β + 2) - (N - 1)(β + 1).
We guarantee you’ll find the right tutor, or we’ll cover the first hour of your lesson.