Get Math Help

GET TUTORING NEAR ME!

By submitting the following form, you agree to Club Z!'s Terms of Use and Privacy Policy

    Dedekind Eta Function

    Definition

    The Dedekind eta function is defined over the upper half-plane H = {τ:ℑ[τ]>0} by η(τ) | congruent | (q^_)^(1/24) (q^_)_∞ | = | (q^_)^(1/24) product_(k = 1)^∞(1 - (q^_)^k) | = | (q^_)^(1/24) sum_(n = - ∞)^∞ (-1)^n (q^_)^(n(3n - 1)/2) | = | sum_(n = - ∞)^∞ (-1)^n (q^_)^((6n - 1)^2/24) | = | (q^_)^(1/24){1 + sum_(n = 1)^∞ (-1)^n[(q^_)^(n(3n - 1)/2) + (q^_)^(n(3n + 1)/2)]} | = | (q^_)^(1/24)(1 - q^_ - (q^_)^2 + (q^_)^5 + (q^_)^7 - (q^_)^12 - ...) (OEIS A010815), where q^_ congruent e^(2π i τ) is the square of the nome q, τ is the half-period ratio, and (q)_∞ is a q-series.

    Related Wolfram Language symbol

    DedekindEta

    Associated person

    Richard Dedekind

    Find the right fit or it’s free.

    We guarantee you’ll find the right tutor, or we’ll cover the first hour of your lesson.