This will display the locations serviced content. This will display the locations serviced content. This will display the locations serviced content.

Demo 1 Logo Demo 1 Logo Club Z!

In-Home & Online Tutoring

Get Math Help

Optional custom content. This can be any HTML containing text, images, links, etc... It will be displayed on all pages!

Topological Vector Space

Description

A topological vector space is a vector space X over a (topological) field F (typically assumed to be the fields R or C of real or complex numbers, respectively) that is endowed with a topology τ such that both vector addition X×X->X and scalar multiplication F×X->X is τ-continuous. Every topological vector space X is trivially an abelian topological group, and also has a continuous dual space X^* consisting of all continuous linear maps X->F from X to the base field F. Note that while some authors insist that the topology τ be Hausdorff, this restriction is not mathematically necessary. Topological vector spaces are of interest in a number of fields including functional analysis and a number of well-studied classes of spaces (e.g., Banach spaces and Hilbert spaces) are topological vector spaces.

Relationship graph

Relationship graph

Examples

A^1(D, dλ^2) | A^2(D, dλ^2) | A^-∞(D, dλ^2) | ℬ(D, dλ^2) | L^∞(T;X) | a^1(D, dλ^2) | a^2(D, dλ^2) | ℬ^h(D, dλ^2) | h^2 | h^∞ | ℬ_0^h(D, dλ^2) | H^2 | H^∞ | L^0(D, dλ^2) | L^2(D, dλ^2) | L^∞(D, dλ^2) | ℬ_0(D, dλ^2) | c_0(Z^+, dη) | ℓ^0(Z^+, dη) | ℓ^2(Z^+, dη) | ℓ^∞(Z^+, dη)

References

Norbert Adasch, Bruno Ernst, and Dieter Keim. Topological Vector Spaces. The Theory without Convexity Conditions. 1978.
Sergei Akbarov. "Pontryagin Duality in the Theory of Topological Vector Spaces and in Topological Algebra." Journal of Mathematical Sciences 113, 179-349, 2003.
Gustave Choquet. Lectures on Analysis. Vol. I: Integration and Topological Vector Spaces. 1969.
Alexander Grothendieck. Topological Vector Spaces. 1973.
John Horvath. Topological Vector Spaces and Distributions. Vol. I. 1966.
Taqdir Husain. The Open Mapping and Closed Graph Theorems in Topological Vector Spaces. 1965.
Gottfried Köthe. Topological Vector Spaces. I. 1969.
Gottfried Köthe. Topological Vector Spaces. II. 1979.
Lawrence Narici and Edward Beckenstein. Topological Vector Spaces, 2nd ed. 2011.
Alexander Provan Robertson and Wendy Robertson. Topological Vector Spaces. 1964.
Helmut H. Schaefer. Topological Vector Spaces. 1966.
Helmut H. Schaefer and Manfred P.H. Wolff. Topological Vector Spaces, 2nd ed. 1999.
François Trèves. Topological Vector Spaces, Distributions and Kernels. 1967.
Albert Wilansky. Modern Methods in Topological Vector Spaces. 1978.
Yau-Chuen Wong. Introductory Theory of Topological Vector Spaces. 1992.

Why Club Z!?

We're Awesome!

Vestibulum vitae aliquam nunc. Suspendisse mollis metus ac tellus egestas pharetra. Suspendisse at viverra purus. Pellentesque nec posuere ligula, eu congue leo. Integer vulputate tempor arcu. Vestibulum vulputate

We're Awesome!

Vestibulum vitae aliquam nunc. Suspendisse mollis metus ac tellus egestas pharetra. Suspendisse at viverra purus. Pellentesque nec posuere ligula, eu congue leo. Integer vulputate tempor arcu. Vestibulum vulputate Vestibulum vitae aliquam nunc. Suspendisse mollis metus ac tellus egestas pharetra. Suspendisse at viverra purus. Pellentesque nec posuere ligula, eu congue leo. Integer vulputate tempor arcu. Vestibulum vulputate

We're Awesome!

Vestibulum vitae aliquam nunc. Suspendisse mollis metus ac tellus egestas pharetra. Suspendisse at viverra purus. Pellentesque nec posuere ligula, eu congue leo. Integer vulputate tempor arcu. Vestibulum vulputate Vestibulum vitae aliquam nunc. Suspendisse mollis metus ac tellus egestas pharetra. Suspendisse at viverra purus. Pellentesque nec posuere ligula, eu congue leo. Integer vulputate tempor arcu. Vestibulum vulputate

We're Awesome!

Vestibulum vitae aliquam nunc. Suspendisse mollis metus ac tellus egestas pharetra. Suspendisse at viverra purus. Pellentesque nec posuere ligula, eu congue leo. Integer vulputate tempor arcu.

OUR PURPOSE

We tutor you in the subjects you need to help you progress.

Subjects We Tutor

What Is Domain In Math

What Is Domain In Math ‘

What Is Domain In Math

What Is Domain In Math ‘

Volume of a Sphere

Volume of a Sphere ‘

Area of a Triangle

Area of a Triangle ‘

Distance Formula

Distance Formula ‘

Distance Formula

Distance Formula ‘

Volume of a Cylinder

Volume of a Cylinder ‘

Find the right fit or it’s free.

We guarantee you’ll find the right tutor, or we’ll cover the first hour of your lesson.