Sphere Eversion
Smale proved that it is mathematically possible to turn a sphere inside-out without introducing a sharp crease at any point. This means there is a regular homotopy from the standard embedding of the 2-sphere in Euclidean three-space to the mirror-reflection embedding such that at every stage in the homotopy, the sphere is being immersed in Euclidean space. This result is so counterintuitive and the proof so technical that the result remained controversial for a number of years.