This will display the locations serviced content. This will display the locations serviced content. This will display the locations serviced content.

Demo 1 Logo Demo 1 Logo Club Z!

In-Home & Online Tutoring

Get Math Help

Optional custom content. This can be any HTML containing text, images, links, etc... It will be displayed on all pages!

Prime K-tuplet

Definition

A prime constellation, also called a prime k-tuple, prime k-tuplet, or prime cluster, is a sequence of k consecutive numbers such that the difference between the first and last is, in some sense, the least possible. More precisely, a prime k-tuplet is a sequence of consecutive primes (p_1, p_2, ..., p_k) with p_k - p_1 = s(k), where s(k) is the smallest number s for which there exist k integers b_1=3) (p(p - 2))/(p - 1)^2 integral_2^x (d x')/(ln x')^2 =1.32032... integral_2^x (d x')/(ln x')^2 P_x(p, p + 4)~2 product_(p>=3) (p(p - 2))/(p - 1)^2 integral_2^x (d x')/(ln x')^2 =1.32032... integral_2^x (d x')/(ln x')^2 P_x(p, p + 6)~4 product_(p>=3) (p(p - 2))/(p - 1)^2 integral_2^x (d x')/(ln x')^2 =2.64065... integral_2^x (d x')/(ln x')^2 P_x(p, p + 2, p + 6)~9/2 product_(p>=5) (p^2(p - 3))/(p - 1)^3 integral_2^x (d x')/(ln x')^3 =2.85825... integral_2^x (d x')/(ln x')^3 P_x(p, p + 4, p + 6)~9/2 product_(p>=5) (p^2(p - 3))/(p - 1)^3 integral_2^x (d x')/(ln x')^3 =2.85825... integral_2^x (d x')/(ln x')^3 P_x(p, p + 2, p + 6, p + 8)~27/2 product_(p>=5) (p^3(p - 4))/(p - 1)^4 integral_2^x (d x')/(ln x')^4 =4.15118... integral_2^x (d x')/(ln x')^4 P_x(p, p + 4, p + 6, p + 10)~27 product_(p>=5) (p^3(p - 4))/(p - 1)^4 integral_2^x (d x')/(ln x')^4 =8.30236... integral_2^x (d x')/(ln x')^4. These numbers are sometimes called the Hardy-Littlewood constants, and are OEIS A114907, .... (◇) is sometimes called the extended twin prime conjecture, and C_(p, p + 2) = 2Π_2, where Π_2 is the twin primes constant. Riesel remarks that the Hardy-Littlewood constants can be computed to arbitrary accuracy without needing the infinite sequence of primes. The integrals above have the analytic forms integral_2^x (d x)/(ln^2 x) | = | Li(x) + 2/(ln2) - x/(ln x) integral_2^x (d x)/(ln^3 x) | = | 1/2 Li(x) - x/(2ln^2 x) - x/(2ln x) + 1/(ln2) + 1/(ln^2 2) integral_2^x (d x)/(ln^4 x) | = | [(Li(x))/6 - x/(3ln^3 x) - x/(6ln^2 x) - x/(6ln x) auto right match + auto left match 2/(3ln^3 2) + 1/(3ln^2 2) + 1/(3ln2)], where Li(x) is the logarithmic integral. The following table gives the number of prime constellations <=10^8, and the second table gives the values predicted by the Hardy-Littlewood formulas. count | 10^5 | 10^6 | 10^7 | 10^8 (p, p + 2) | 1224 | 8169 | 58980 | 440312 (p, p + 4) | 1216 | 8144 | 58622 | 440258 (p, p + 6) | 2447 | 16386 | 117207 | 879908 (p, p + 2, p + 6) | 259 | 1393 | 8543 | 55600 (p, p + 4, p + 6) | 248 | 1444 | 8677 | 55556 (p, p + 2, p + 6, p + 8) | 38 | 166 | 899 | 4768 (p, p + 6, p + 12, p + 18) | 75 | 325 | 1695 | 9330 Hardy-Littlewood | 10^5 | 10^6 | 10^7 | 10^8 (p, p + 2) | 1249 | 8248 | 58754 | 440368 (p, p + 4) | 1249 | 8248 | 58754 | 440368 (p, p + 6) | 2497 | 16496 | 117508 | 880736 (p, p + 2, p + 6) | 279 | 1446 | 8591 | 55491 (p, p + 4, p + 6) | 279 | 1446 | 8591 | 55491 (p, p + 2, p + 6, p + 8) | 53 | 184 | 863 | 4735 (p, p + 6, p + 12, p + 18) | | | | Consider prime constellations in which each term is of the form n^2 + 1. Hardy and Littlewood showed that the number of prime constellations of this form 2 p prime)[1 - (-1)^((p - 1)/2)/(p - 1)] = 1.3727... (Le Lionnais 1983). Forbes gives a list of the "top ten" prime k-tuples for 2<=k<=17. The largest known 14-constellations are (11319107721272355839 + 0, 2, 8, 14, 18, 20, 24, 30, 32, 38, 42, 44, 48, 50), (10756418345074847279 + 0, 2, 8, 14, 18, 20, 24, 30, 32, 38, 42, 44, 48, 50), (6808488664768715759 + 0, 2, 8, 14, 18, 20, 24, 30, 32, 38, 42, 44, 48, 50), (6120794469172998449 + 0, 2, 8, 14, 18, 20, 24, 30, 32, 38, 42, 44, 48, 50), (5009128141636113611 + 0, 2, 6, 8, 12, 18, 20, 26, 30, 32, 36, 42, 48, 50). The largest known prime 15-constellations are (84244343639633356306067 + 0, 2, 6, 12, 14, 20, 24, 26, 30, 36, 42, 44, 50, 54, 56), (8985208997951457604337 + 0, 2, 6, 12, 14, 20, 26, 30, 32, 36, 42, 44, 50, 54, 56), (3594585413466972694697 + 0, 2, 6, 12, 14, 20, 26, 30, 32, 36, 42, 44, 50, 54, 56), (3514383375461541232577 + 0, 2, 6, 12, 14, 20, 26, 30, 32, 36, 42, 44, 50, 54, 56), (3493864509985912609487 + 0, 2, 6, 12, 14, 20, 24, 26, 30, 36, 42, 44, 50, 54, 56). The largest known prime 16-constellations are (3259125690557440336637 + 0, 2, 6, 12, 14, 20, 26, 30, 32, 36, 42, 44, 50, 54, 56, 60), (1522014304823128379267 + 0, 2, 6, 12, 14, 20, 26, 30, 32, 36, 42, 44, 50, 54, 56, 60), (47710850533373130107 + 0, 2, 6, 12, 14, 20, 26, 30, 32, 36, 42, 44, 50, 54, 56, 60), (13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73). The largest known prime 17-constellations are (3259125690557440336631 + 0, 6, 8, 12, 18, 20, 26, 32, 36, 38, 42, 48, 50, 56, 60, 62, 66), (17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83) (13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79). Smith found 8 consecutive primes spaced like the cluster {p_n}_(n = 5)^12. K. Conrow and J. J. Devore have found 15 consecutive primes spaced like the cluster {p_n}_(n = 5)^19 given by {1632373745527558118190 + p_n}_(n = 5)^19, the first member of which is 1632373745527558118201. Rivera tabulates the smallest examples of k consecutive primes ending in a given digit d = 1, 3, 7, or 9 for k = 5 to 11. For example, 216401, 216421, 216431, 216451, 216481 is the smallest set of five consecutive primes ending in the digit 1.

Why Club Z!?

We're Awesome!

Vestibulum vitae aliquam nunc. Suspendisse mollis metus ac tellus egestas pharetra. Suspendisse at viverra purus. Pellentesque nec posuere ligula, eu congue leo. Integer vulputate tempor arcu. Vestibulum vulputate

We're Awesome!

Vestibulum vitae aliquam nunc. Suspendisse mollis metus ac tellus egestas pharetra. Suspendisse at viverra purus. Pellentesque nec posuere ligula, eu congue leo. Integer vulputate tempor arcu. Vestibulum vulputate Vestibulum vitae aliquam nunc. Suspendisse mollis metus ac tellus egestas pharetra. Suspendisse at viverra purus. Pellentesque nec posuere ligula, eu congue leo. Integer vulputate tempor arcu. Vestibulum vulputate

We're Awesome!

Vestibulum vitae aliquam nunc. Suspendisse mollis metus ac tellus egestas pharetra. Suspendisse at viverra purus. Pellentesque nec posuere ligula, eu congue leo. Integer vulputate tempor arcu. Vestibulum vulputate Vestibulum vitae aliquam nunc. Suspendisse mollis metus ac tellus egestas pharetra. Suspendisse at viverra purus. Pellentesque nec posuere ligula, eu congue leo. Integer vulputate tempor arcu. Vestibulum vulputate

We're Awesome!

Vestibulum vitae aliquam nunc. Suspendisse mollis metus ac tellus egestas pharetra. Suspendisse at viverra purus. Pellentesque nec posuere ligula, eu congue leo. Integer vulputate tempor arcu.

OUR PURPOSE

We tutor you in the subjects you need to help you progress.

Subjects We Tutor

What Is Domain In Math

What Is Domain In Math ‘

What Is Domain In Math

What Is Domain In Math ‘

Volume of a Sphere

Volume of a Sphere ‘

Area of a Triangle

Area of a Triangle ‘

Distance Formula

Distance Formula ‘

Distance Formula

Distance Formula ‘

Volume of a Cylinder

Volume of a Cylinder ‘

Find the right fit or it’s free.

We guarantee you’ll find the right tutor, or we’ll cover the first hour of your lesson.