Inverse Secant
cos^(-1)(1/x)
1/2 (π - 2 sin^(-1)(1/x))
π/2 + i log(sqrt(1 - 1/x^2) + i/x)
x = 1
{x element R : x<=-1 or x>=1}
{y element R : 0<=y<π/2 or π/2 injective (one-to-one)
π + (-1)^floor((-arg(1/x) - arg(x + 1) + π)/(2 π)) i^(2 floor(arg((x + 1)/x)/(2 π)) + 1) (-sqrt(2) sqrt(x + 1) - (5 (x + 1)^(3/2))/(6 sqrt(2)) - (43 (x + 1)^(5/2))/(80 sqrt(2)) - (177 (x + 1)^(7/2))/(448 sqrt(2)) - (2867 (x + 1)^(9/2))/(9216 sqrt(2)) + O((x + 1)^(11/2)))
1/2 (sqrt(-1/x^2) x log(-4/x^2) + π) - 1/4 (sqrt(-1/x^2) x) x^2 - 3/32 (sqrt(-1/x^2) x) x^4 + O(x^6) (generalized Puiseux series)
sqrt(2) sqrt(x - 1) - (5 (x - 1)^(3/2))/(6 sqrt(2)) + (43 (x - 1)^(5/2))/(80 sqrt(2)) - (177 (x - 1)^(7/2))/(448 sqrt(2)) + (2867 (x - 1)^(9/2))/(9216 sqrt(2)) + O((x - 1)^(11/2)) (Puiseux series)
π/2 - 1/x - 1/(6 x^3) - 3/(40 x^5) + O((1/x)^6) (Laurent series)
d/dx(sec^(-1)(x)) = 1/(sqrt(1 - 1/x^2) x^2)
integral sec^(-1)(x) dx = x sec^(-1)(x) - (sqrt(1 - 1/x^2) x log(sqrt(x^2 - 1) + x))/sqrt(x^2 - 1) + constant (assuming a complex-valued logarithm)
min{sec^(-1)(x)} = 0 at x = 1
max{sec^(-1)(x)} = π at x = -1
lim_(x-> ± ∞) sec^(-1)(x) = π/2≈1.5708
sec^(-1)(x) = dc^(-1)(x|0)
sec^(-1)(x) = nc^(-1)(x|0)
sec^(-1)(x) = cos^(-1)(1/x)
integral_0^1 sec^(-1)(x) dx≈-1.5707963268...
integral_(-1)^0 sec^(-1)(x) dx≈4.7123889804...
sec^(-1)(x) = π/2 - sum_(k=0)^∞ (x^(-1 - 2 k) (1/2)_k)/(k! + 2 k k!) for abs(x)<1
sec^(-1)(x) = 2 sqrt(-1 + x) sum_(k=0)^∞ ((-1)^k (-1 + x)^k 2F1(1/2, 3/2 + k, 3/2, -1) (1/2)_k)/(k!) for abs(-1 + x)<1
sec^(-1)(x) = π - 2 sqrt(-1 - x) sum_(k=0)^∞ ((1 + x)^k 2F1(1/2, 3/2 + k, 3/2, -1) (1/2)_k)/(k!) for abs(1 + x)<1
sec^(-1)(x) = integral_1^x 1/(t sqrt(-1 + t^2)) dt for Re(x)>0
sec^(-1)(x) = integral_1^x 1/(sqrt(1 - 1/t^2) t^2) dt for (x not element R or ((not 1<=x<∞) and (not -∞ sec^(-1)(x) = π/2 + i/(4 π^(3/2) x) integral_(-i ∞ + γ)^(i ∞ + γ) (1 - 1/x^2)^(-s) Γ(1/2 - s)^2 Γ(s) Γ(1/2 + s) ds for (0<γ<1/2 and abs(arg(1 - 1/x^2))<π) sec^(-1)(x) = π/2 + i/(4 π^(3/2) x) integral_(-i ∞ + γ)^(i ∞ + γ) ((-1/x^2)^(-s) Γ(1/2 - s)^2 Γ(s))/Γ(3/2 - s) ds for (0<γ<1/2 and abs(arg(-1/x^2))<π)
sec^(-1)(x) = π/2 - sqrt(1 - 1/x^2)/(x (1 + Κ_(k=1)^∞ (-(2 floor((1 + k)/2) (-1 + 2 floor((1 + k)/2)))/x^2)/(1 + 2 k))) = π/2 - sqrt(1 - 1/x^2)/(x (1 + -2/((3 - 2/((5 - 12/((7 - 12/((9 + ...) x^2)) x^2)) x^2)) x^2))) for (not (x element R and -1<=x<=1))