This will display the locations serviced content. This will display the locations serviced content. This will display the locations serviced content.

Demo 1 Logo Demo 1 Logo Club Z!

In-Home & Online Tutoring

Get Math Help

Optional custom content. This can be any HTML containing text, images, links, etc... It will be displayed on all pages!

Inverse Secant

Plot

Alternate form

cos^(-1)(1/x)

1/2 (π - 2 sin^(-1)(1/x))

π/2 + i log(sqrt(1 - 1/x^2) + i/x)

Root

x = 1

Properties as a real function

{x element R : x<=-1 or x>=1}

{y element R : 0<=y<π/2 or π/2

injective (one-to-one)

Series expansion at x = -1

π + (-1)^floor((-arg(1/x) - arg(x + 1) + π)/(2 π)) i^(2 floor(arg((x + 1)/x)/(2 π)) + 1) (-sqrt(2) sqrt(x + 1) - (5 (x + 1)^(3/2))/(6 sqrt(2)) - (43 (x + 1)^(5/2))/(80 sqrt(2)) - (177 (x + 1)^(7/2))/(448 sqrt(2)) - (2867 (x + 1)^(9/2))/(9216 sqrt(2)) + O((x + 1)^(11/2)))

Series expansion at x = 0

1/2 (sqrt(-1/x^2) x log(-4/x^2) + π) - 1/4 (sqrt(-1/x^2) x) x^2 - 3/32 (sqrt(-1/x^2) x) x^4 + O(x^6) (generalized Puiseux series)

Series expansion at x = 1

sqrt(2) sqrt(x - 1) - (5 (x - 1)^(3/2))/(6 sqrt(2)) + (43 (x - 1)^(5/2))/(80 sqrt(2)) - (177 (x - 1)^(7/2))/(448 sqrt(2)) + (2867 (x - 1)^(9/2))/(9216 sqrt(2)) + O((x - 1)^(11/2)) (Puiseux series)

Series expansion at x = ∞

π/2 - 1/x - 1/(6 x^3) - 3/(40 x^5) + O((1/x)^6) (Laurent series)

Derivative

d/dx(sec^(-1)(x)) = 1/(sqrt(1 - 1/x^2) x^2)

Indefinite integral

integral sec^(-1)(x) dx = x sec^(-1)(x) - (sqrt(1 - 1/x^2) x log(sqrt(x^2 - 1) + x))/sqrt(x^2 - 1) + constant (assuming a complex-valued logarithm)

Global minimum

min{sec^(-1)(x)} = 0 at x = 1

Global maximum

max{sec^(-1)(x)} = π at x = -1

Limit

lim_(x-> ± ∞) sec^(-1)(x) = π/2≈1.5708

Alternative representation

sec^(-1)(x) = dc^(-1)(x|0)

sec^(-1)(x) = nc^(-1)(x|0)

sec^(-1)(x) = cos^(-1)(1/x)

Definite integral

integral_0^1 sec^(-1)(x) dx≈-1.5707963268...

integral_(-1)^0 sec^(-1)(x) dx≈4.7123889804...

Series representation

sec^(-1)(x) = π/2 - sum_(k=0)^∞ (x^(-1 - 2 k) (1/2)_k)/(k! + 2 k k!) for abs(x)<1

sec^(-1)(x) = 2 sqrt(-1 + x) sum_(k=0)^∞ ((-1)^k (-1 + x)^k 2F1(1/2, 3/2 + k, 3/2, -1) (1/2)_k)/(k!) for abs(-1 + x)<1

sec^(-1)(x) = π - 2 sqrt(-1 - x) sum_(k=0)^∞ ((1 + x)^k 2F1(1/2, 3/2 + k, 3/2, -1) (1/2)_k)/(k!) for abs(1 + x)<1

Integral representation

sec^(-1)(x) = integral_1^x 1/(t sqrt(-1 + t^2)) dt for Re(x)>0

sec^(-1)(x) = integral_1^x 1/(sqrt(1 - 1/t^2) t^2) dt for (x not element R or ((not 1<=x<∞) and (not -∞

sec^(-1)(x) = π/2 + i/(4 π^(3/2) x) integral_(-i ∞ + γ)^(i ∞ + γ) (1 - 1/x^2)^(-s) Γ(1/2 - s)^2 Γ(s) Γ(1/2 + s) ds for (0<γ<1/2 and abs(arg(1 - 1/x^2))<π)

sec^(-1)(x) = π/2 + i/(4 π^(3/2) x) integral_(-i ∞ + γ)^(i ∞ + γ) ((-1/x^2)^(-s) Γ(1/2 - s)^2 Γ(s))/Γ(3/2 - s) ds for (0<γ<1/2 and abs(arg(-1/x^2))<π)

Continued fraction representation

sec^(-1)(x) = π/2 - sqrt(1 - 1/x^2)/(x (1 + Κ_(k=1)^∞ (-(2 floor((1 + k)/2) (-1 + 2 floor((1 + k)/2)))/x^2)/(1 + 2 k))) = π/2 - sqrt(1 - 1/x^2)/(x (1 + -2/((3 - 2/((5 - 12/((7 - 12/((9 + ...) x^2)) x^2)) x^2)) x^2))) for (not (x element R and -1<=x<=1))

Why Club Z!?

We're Awesome!

Vestibulum vitae aliquam nunc. Suspendisse mollis metus ac tellus egestas pharetra. Suspendisse at viverra purus. Pellentesque nec posuere ligula, eu congue leo. Integer vulputate tempor arcu. Vestibulum vulputate

We're Awesome!

Vestibulum vitae aliquam nunc. Suspendisse mollis metus ac tellus egestas pharetra. Suspendisse at viverra purus. Pellentesque nec posuere ligula, eu congue leo. Integer vulputate tempor arcu. Vestibulum vulputate Vestibulum vitae aliquam nunc. Suspendisse mollis metus ac tellus egestas pharetra. Suspendisse at viverra purus. Pellentesque nec posuere ligula, eu congue leo. Integer vulputate tempor arcu. Vestibulum vulputate

We're Awesome!

Vestibulum vitae aliquam nunc. Suspendisse mollis metus ac tellus egestas pharetra. Suspendisse at viverra purus. Pellentesque nec posuere ligula, eu congue leo. Integer vulputate tempor arcu. Vestibulum vulputate Vestibulum vitae aliquam nunc. Suspendisse mollis metus ac tellus egestas pharetra. Suspendisse at viverra purus. Pellentesque nec posuere ligula, eu congue leo. Integer vulputate tempor arcu. Vestibulum vulputate

We're Awesome!

Vestibulum vitae aliquam nunc. Suspendisse mollis metus ac tellus egestas pharetra. Suspendisse at viverra purus. Pellentesque nec posuere ligula, eu congue leo. Integer vulputate tempor arcu.

OUR PURPOSE

We tutor you in the subjects you need to help you progress.

Subjects We Tutor

What Is Domain In Math

What Is Domain In Math ‘

What Is Domain In Math

What Is Domain In Math ‘

Volume of a Sphere

Volume of a Sphere ‘

Area of a Triangle

Area of a Triangle ‘

Distance Formula

Distance Formula ‘

Distance Formula

Distance Formula ‘

Volume of a Cylinder

Volume of a Cylinder ‘

Find the right fit or it’s free.

We guarantee you’ll find the right tutor, or we’ll cover the first hour of your lesson.