This will display the locations serviced content. This will display the locations serviced content. This will display the locations serviced content.

Demo 1 Logo Demo 1 Logo Club Z!

In-Home & Online Tutoring

Get Math Help

Optional custom content. This can be any HTML containing text, images, links, etc... It will be displayed on all pages!

Change of Variables Theorem

Definition

A theorem which effectively describes how lengths, areas, volumes, and generalized n-dimensional volumes (contents) are distorted by differentiable functions. In particular, the change of variables theorem reduces the whole problem of figuring out the distortion of the content to understanding the infinitesimal distortion, i.e., the distortion of the derivative (a linear map), which is given by the linear map's determinant. So f:R^n->R^n is an area-preserving linear transformation iff left bracketing bar det(f') right bracketing bar = 1, and in more generality, if S is any subset of R^n, the content of its image is given by left bracketing bar det(f') right bracketing bar times the content of the original. The change of variables theorem takes this infinitesimal knowledge, and applies calculus by breaking up the domain into small pieces and adds up the change in area, bit by bit. The change of variable formula persists to the generality of differential k-forms on manifolds, giving the formula integral_M(f^* ω) = integral_W(ω) under the conditions that M and W are compact connected oriented manifolds with nonempty boundaries, f:M->W is a smooth map which is an orientation-preserving diffeomorphism of the boundaries. In one dimension, the explicit statement of the theorem for f a continuous function of y is integral_s f(ϕ(x))(d ϕ)/(d x) d x = integral_T f(y) d y, where y = ϕ(x) is a differential mapping on the interval [c, d] and T is the interval [a, b] with ϕ(c) = a and ϕ(d) = b. In two dimensions, the explicit statement of the theorem is integral_R f(x, y) d x d y = integral_R^* f[x(u, v), y(u, v)] left bracketing bar (d(x, y))/(d(u, v)) right bracketing bar d u d v and in three dimensions, it is integral_R f(x, y, z) d x d y d z = integral_R^* f[x(u, v, w), y(u, v, w), z(u, v, w)] left bracketing bar (d(x, y, z))/(d(u, v, w)) right bracketing bar d u d v d w, where R = f(R^*) is the image of the original region R^*, left bracketing bar (d(x, y, z))/(d(u, v, w)) right bracketing bar is the Jacobian, and f is a global orientation-preserving diffeomorphism of R and R^* (which are open subsets of R^n). The change of variables theorem is a simple consequence of the curl theorem and a little de Rham cohomology. The generalization to n dimensions requires no additional assumptions other than the regularity conditions on the boundary.

Why Club Z!?

We're Awesome!

Vestibulum vitae aliquam nunc. Suspendisse mollis metus ac tellus egestas pharetra. Suspendisse at viverra purus. Pellentesque nec posuere ligula, eu congue leo. Integer vulputate tempor arcu. Vestibulum vulputate

We're Awesome!

Vestibulum vitae aliquam nunc. Suspendisse mollis metus ac tellus egestas pharetra. Suspendisse at viverra purus. Pellentesque nec posuere ligula, eu congue leo. Integer vulputate tempor arcu. Vestibulum vulputate Vestibulum vitae aliquam nunc. Suspendisse mollis metus ac tellus egestas pharetra. Suspendisse at viverra purus. Pellentesque nec posuere ligula, eu congue leo. Integer vulputate tempor arcu. Vestibulum vulputate

We're Awesome!

Vestibulum vitae aliquam nunc. Suspendisse mollis metus ac tellus egestas pharetra. Suspendisse at viverra purus. Pellentesque nec posuere ligula, eu congue leo. Integer vulputate tempor arcu. Vestibulum vulputate Vestibulum vitae aliquam nunc. Suspendisse mollis metus ac tellus egestas pharetra. Suspendisse at viverra purus. Pellentesque nec posuere ligula, eu congue leo. Integer vulputate tempor arcu. Vestibulum vulputate

We're Awesome!

Vestibulum vitae aliquam nunc. Suspendisse mollis metus ac tellus egestas pharetra. Suspendisse at viverra purus. Pellentesque nec posuere ligula, eu congue leo. Integer vulputate tempor arcu.

OUR PURPOSE

We tutor you in the subjects you need to help you progress.

Subjects We Tutor

What Is Domain In Math

What Is Domain In Math ‘

What Is Domain In Math

What Is Domain In Math ‘

Volume of a Sphere

Volume of a Sphere ‘

Area of a Triangle

Area of a Triangle ‘

Distance Formula

Distance Formula ‘

Distance Formula

Distance Formula ‘

Volume of a Cylinder

Volume of a Cylinder ‘

Find the right fit or it’s free.

We guarantee you’ll find the right tutor, or we’ll cover the first hour of your lesson.