Dirichlet Series Generating Function
Given a sequence {a_n}_(n = 1)^∞, a formal power series f(s) | = | sum_(n = 1)^∞ a_n/n^s | = | a_1 + a_2/2^s + a_3/3^s + ... is called the Dirichlet generating function of the sequence. The Dirichlet generating function of a sequence {a_n}_(n = 1)^∞ can be found in the Wolfram Language using DirichletTransform[a[n], n, s].