This will display the locations serviced content. This will display the locations serviced content. This will display the locations serviced content.

Demo 1 Logo Demo 1 Logo Club Z!

In-Home & Online Tutoring

Get Math Help

Optional custom content. This can be any HTML containing text, images, links, etc... It will be displayed on all pages!

Boy Surface

Example plot

Example plot

Equations

x(u, v) = (a (sqrt(2) cos(2 u) cos^2(v) + cos(u) sin(2 v)))/(2 - sqrt(2) sin(3 u) sin(2 v))
y(u, v) = (a (sqrt(2) sin(2 u) cos^2(v) + cos(u) sin(2 v)))/(2 - sqrt(2) sin(3 u) sin(2 v))
z(u, v) = (3 a cos^2(v))/(2 - sqrt(2) sin(3 u) sin(2 v))

81 a^2 x^2 z^2 - 162 a^2 x y z^2 + 54 sqrt(2) a^2 x z^3 + 81 a^2 y^2 z^2 - 54 sqrt(2) a^2 y z^3 + 18 a^2 z^4 - 486 a x^3 y z + 1458 a x^2 y^2 z - 324 sqrt(2) a x^2 y z^2 - 216 a x^2 z^3 - 1458 a x y^3 z + 486 sqrt(2) a x y^2 z^2 + 216 a x y z^3 - 144 sqrt(2) a x z^4 + 486 a y^4 z - 162 sqrt(2) a y^3 z^2 - 216 a y^2 z^3 + 108 sqrt(2) a y z^4 - 48 a z^5 + 729 x^6 - 2916 x^5 y + 486 sqrt(2) x^5 z + 5103 x^4 y^2 - 972 sqrt(2) x^4 y z - 162 x^4 z^2 - 5832 x^3 y^3 + 972 sqrt(2) x^3 y^2 z + 1296 x^3 y z^2 - 216 sqrt(2) x^3 z^3 + 5103 x^2 y^4 - 972 sqrt(2) x^2 y^3 z - 2106 x^2 y^2 z^2 + 432 sqrt(2) x^2 y z^3 + 72 x^2 z^4 - 2916 x y^5 + 486 sqrt(2) x y^4 z + 1944 x y^3 z^2 - 540 sqrt(2) x y^2 z^3 - 144 x y z^4 + 96 sqrt(2) x z^5 + 729 y^6 - 648 y^4 z^2 + 108 sqrt(2) y^3 z^3 + 108 y^2 z^4 - 48 sqrt(2) y z^5 + 32 z^6 = 0

Surface properties

6

Metric properties

g_(uu) = (a^2 ((3 sqrt(2) cos(3 u) sin(2 v) (sqrt(2) sin(2 u) cos^2(v) + cos(u) sin(2 v)) + (2 - sqrt(2) sin(3 u) sin(2 v)) (2 sqrt(2) cos(2 u) cos^2(v) - sin(u) sin(2 v)))^2 + (3 sqrt(2) cos(3 u) sin(2 v) (sqrt(2) cos(2 u) cos^2(v) + cos(u) sin(2 v)) + (sqrt(2) sin(3 u) sin(2 v) - 2) (sin(u) sin(2 v) + 2 sqrt(2) sin(2 u) cos^2(v)))^2 + 648 cos^2(3 u) sin^2(v) cos^6(v)))/(sqrt(2) sin(3 u) sin(2 v) - 2)^4
g_(uv) = (2 a^2 (27 sqrt(2) cos(3 u) sin(v) cos^4(v) (sqrt(2) sin(3 u - v) + sqrt(2) sin(3 u + v) - 4 sin(v)) + 2 (6 (cos(u) + cos(5 u)) sin(v) cos^3(v) - 4 sin(2 u) cos^2(v) (sqrt(2) - sin(3 u) sin(2 v)) + sin(2 v) (sin(u) (sqrt(2) sin(3 u) sin(2 v) - 2) + 3 sqrt(2) cos(u) cos(3 u) sin(2 v))) (cos(u) cos(2 v) + 1/2 cos(2 u) cos(v) (sin(3 u - v) + sin(3 u + v) - 2 sqrt(2) sin(v))) + 2 (4 sqrt(2) cos(2 u) cos^2(v) - 4 (sin(u) + sin(5 u)) sin(v) cos^3(v) + 6 sin(2 u) cos(3 u) sin(2 v) cos^2(v) + sin(2 v) (sin(u) (sqrt(2) sin(3 u) sin(2 v) - 2) + 3 sqrt(2) cos(u) cos(3 u) sin(2 v))) (cos(u) cos(2 v) + 1/2 sin(2 u) cos(v) (sin(3 u - v) + sin(3 u + v) - 2 sqrt(2) sin(v)))))/(sqrt(2) sin(3 u) sin(2 v) - 2)^4
g_(vu) = (2 a^2 (27 sqrt(2) cos(3 u) sin(v) cos^4(v) (sqrt(2) sin(3 u - v) + sqrt(2) sin(3 u + v) - 4 sin(v)) + 2 (6 (cos(u) + cos(5 u)) sin(v) cos^3(v) - 4 sin(2 u) cos^2(v) (sqrt(2) - sin(3 u) sin(2 v)) + sin(2 v) (sin(u) (sqrt(2) sin(3 u) sin(2 v) - 2) + 3 sqrt(2) cos(u) cos(3 u) sin(2 v))) (cos(u) cos(2 v) + 1/2 cos(2 u) cos(v) (sin(3 u - v) + sin(3 u + v) - 2 sqrt(2) sin(v))) + 2 (4 sqrt(2) cos(2 u) cos^2(v) - 4 (sin(u) + sin(5 u)) sin(v) cos^3(v) + 6 sin(2 u) cos(3 u) sin(2 v) cos^2(v) + sin(2 v) (sin(u) (sqrt(2) sin(3 u) sin(2 v) - 2) + 3 sqrt(2) cos(u) cos(3 u) sin(2 v))) (cos(u) cos(2 v) + 1/2 sin(2 u) cos(v) (sin(3 u - v) + sin(3 u + v) - 2 sqrt(2) sin(v)))))/(sqrt(2) sin(3 u) sin(2 v) - 2)^4
g_(vv) = (a^2 (9 cos^2(v) (sqrt(2) sin(3 u - v) + sqrt(2) sin(3 u + v) - 4 sin(v))^2 + 4 (2 cos(u) cos(2 v) + cos(2 u) cos(v) (sin(3 u - v) + sin(3 u + v) - 2 sqrt(2) sin(v)))^2 + 4 (2 cos(u) cos(2 v) + sin(2 u) cos(v) (sin(3 u - v) + sin(3 u + v) - 2 sqrt(2) sin(v)))^2))/(sqrt(2) sin(3 u) sin(2 v) - 2)^4

Vector properties

left double bracketing bar x(u, v) right double bracketing bar = (a sqrt(2 sqrt(2) sin(v) cos^3(v) (sin(u) + sin(3 u) + cos(u) + cos(3 u)) + 2 cos^2(u) sin^2(2 v) + 11 cos^4(v)))/(2 - sqrt(2) sin(3 u) sin(2 v))

N^^(u, v) = -(3 cos^2(v) (60 sin(u) + 32 sin(5 u) + 4 sin(7 u) - 6 sin(u - 4 v) + sqrt(2) sin(4 u - 4 v) - 8 sin(5 u - 4 v) - 2 sin(7 u - 4 v) - sqrt(2) sin(8 u - 4 v) - 8 sin(u - 2 v) + 40 sqrt(2) sin(2 u - 2 v) + 2 sqrt(2) sin(4 u - 2 v) + 8 sin(5 u - 2 v) - 2 sqrt(2) sin(8 u - 2 v) - 40 sqrt(2) sin(2 (u + v)) - sqrt(2) sin(4 (u + v)) - 8 sin(u + 2 v) - 2 sqrt(2) sin(4 u + 2 v) + 8 sin(5 u + 2 v) + 2 sqrt(2) sin(8 u + 2 v) - 6 sin(u + 4 v) - 8 sin(5 u + 4 v) - 2 sin(7 u + 4 v) + sqrt(2) sin(8 u + 4 v)))/(abs(cos(v)) sqrt(576 (4 cos(2 v) sin(2 u) sin(3 u) (sqrt(2) sin(3 u) sin(2 v) - 2) cos^3(v) + 4 sqrt(2) sin(2 u) sin(v) (sin^2(3 u) sin^2(2 v) + 2) cos^2(v) + (-16 (2 cos(u) + cos(3 u)) sin^2(u) sin^2(2 v) + 6 cos(u) cos(3 u) cos(2 v) (sin(3 u) sin(2 v) - sqrt(2)) sin(2 v) + sin(u) (8 sin^2(v) + sin(3 u) (sin(3 u) sin(2 v) - sqrt(2)) sin(4 v))) cos(v) + sin(v) sin^2(2 v) (2 sin(u) sin(3 u) (sin(3 u) sin(2 v) - 2 sqrt(2)) + cos(u) (3 sin(6 u) sin(2 v) - 6 sqrt(2) cos(3 u))))^2 + 9 cos^2(v) (-60 sin(u) - 32 sin(5 u) - 4 sin(7 u) + 6 sin(u - 4 v) - sqrt(2) sin(4 u - 4 v) + 8 sin(5 u - 4 v) + 2 sin(7 u - 4 v) + sqrt(2) sin(8 u - 4 v) + 8 sin(u - 2 v) - 40 sqrt(2) sin(2 u - 2 v) - 2 sqrt(2) sin(4 u - 2 v) - 8 sin(5 u - 2 v) + 2 sqrt(2) sin(8 u - 2 v) + 40 sqrt(2) sin(2 (u + v)) + sqrt(2) sin(4 (u + v)) + 8 sin(u + 2 v) + 2 sqrt(2) sin(4 u + 2 v) - 8 sin(5 u + 2 v) - 2 sqrt(2) sin(8 u + 2 v) + 6 sin(u + 4 v) + 8 sin(5 u + 4 v) + 2 sin(7 u + 4 v) - sqrt(2) sin(8 u + 4 v))^2 + cos^2(v) (-18 sqrt(2) cos(u) + 14 sqrt(2) cos(3 u) - 2 sqrt(2) cos(5 u) + 4 sqrt(2) cos(7 u) + 2 sqrt(2) cos(9 u) + sqrt(2) cos(u - 4 v) - 6 cos(2 u - 4 v) + sqrt(2) cos(3 u - 4 v) - 6 cos(4 u - 4 v) + sqrt(2) cos(5 u - 4 v) - 2 cos(6 u - 4 v) - 2 sqrt(2) cos(7 u - 4 v) - sqrt(2) cos(9 u - 4 v) + 24 sqrt(2) cos(u - 2 v) - 4 cos(2 u - 2 v) + 8 sqrt(2) cos(3 u - 2 v) + 20 cos(4 u - 2 v) + 4 cos(6 u - 2 v) + 4 cos(2 (u + v)) + 6 cos(4 (u + v)) + 24 sqrt(2) cos(u + 2 v) + 8 sqrt(2) cos(3 u + 2 v) - 20 cos(4 u + 2 v) - 4 cos(6 u + 2 v) + sqrt(2) cos(u + 4 v) + 6 cos(2 u + 4 v) + sqrt(2) cos(3 u + 4 v) + sqrt(2) cos(5 u + 4 v) + 2 cos(6 u + 4 v) - 2 sqrt(2) cos(7 u + 4 v) - sqrt(2) cos(9 u + 4 v) - 18 sqrt(2) sin(u) + 70 sqrt(2) sin(3 u) + 2 sqrt(2) sin(5 u) + 4 sqrt(2) sin(7 u) + 2 sqrt(2) sin(9 u) + sqrt(2) sin(u - 4 v) + 6 sin(2 u - 4 v) - 11 sqrt(2) sin(3 u - 4 v) - 6 sin(4 u - 4 v) - sqrt(2) sin(5 u - 4 v) - 6 sin(6 u - 4 v) - 2 sqrt(2) sin(7 u - 4 v) - sqrt(2) sin(9 u - 4 v) + 24 sqrt(2) sin(u - 2 v) + 4 sin(2 u - 2 v) + 24 sqrt(2) sin(3 u - 2 v) + 20 sin(4 u - 2 v) - 4 sin(6 u - 2 v) - 120 sin(2 v) - 12 sin(4 v) - 4 sin(2 (u + v)) + 6 sin(4 (u + v)) + 24 sqrt(2) sin(u + 2 v) + 24 sqrt(2) sin(3 u + 2 v) - 20 sin(4 u + 2 v) + 4 sin(6 u + 2 v) + sqrt(2) sin(u + 4 v) - 6 sin(2 u + 4 v) - 11 sqrt(2) sin(3 u + 4 v) - sqrt(2) sin(5 u + 4 v) + 6 sin(6 u + 4 v) - 2 sqrt(2) sin(7 u + 4 v) - sqrt(2) sin(9 u + 4 v))^2))

Properties

algebraic surfaces | nonorientable surfaces | sextic surfaces

Why Club Z!?

We're Awesome!

Vestibulum vitae aliquam nunc. Suspendisse mollis metus ac tellus egestas pharetra. Suspendisse at viverra purus. Pellentesque nec posuere ligula, eu congue leo. Integer vulputate tempor arcu. Vestibulum vulputate

We're Awesome!

Vestibulum vitae aliquam nunc. Suspendisse mollis metus ac tellus egestas pharetra. Suspendisse at viverra purus. Pellentesque nec posuere ligula, eu congue leo. Integer vulputate tempor arcu. Vestibulum vulputate Vestibulum vitae aliquam nunc. Suspendisse mollis metus ac tellus egestas pharetra. Suspendisse at viverra purus. Pellentesque nec posuere ligula, eu congue leo. Integer vulputate tempor arcu. Vestibulum vulputate

We're Awesome!

Vestibulum vitae aliquam nunc. Suspendisse mollis metus ac tellus egestas pharetra. Suspendisse at viverra purus. Pellentesque nec posuere ligula, eu congue leo. Integer vulputate tempor arcu. Vestibulum vulputate Vestibulum vitae aliquam nunc. Suspendisse mollis metus ac tellus egestas pharetra. Suspendisse at viverra purus. Pellentesque nec posuere ligula, eu congue leo. Integer vulputate tempor arcu. Vestibulum vulputate

We're Awesome!

Vestibulum vitae aliquam nunc. Suspendisse mollis metus ac tellus egestas pharetra. Suspendisse at viverra purus. Pellentesque nec posuere ligula, eu congue leo. Integer vulputate tempor arcu.

OUR PURPOSE

We tutor you in the subjects you need to help you progress.

Subjects We Tutor

What Is Domain In Math

What Is Domain In Math ‘

What Is Domain In Math

What Is Domain In Math ‘

Volume of a Sphere

Volume of a Sphere ‘

Area of a Triangle

Area of a Triangle ‘

Distance Formula

Distance Formula ‘

Distance Formula

Distance Formula ‘

Volume of a Cylinder

Volume of a Cylinder ‘

Find the right fit or it’s free.

We guarantee you’ll find the right tutor, or we’ll cover the first hour of your lesson.