This will display the locations serviced content. This will display the locations serviced content. This will display the locations serviced content.

Demo 1 Logo Demo 1 Logo Club Z!

In-Home & Online Tutoring

Get Math Help

Optional custom content. This can be any HTML containing text, images, links, etc... It will be displayed on all pages!

Pseudoinverse

Usage

PseudoInverse[m] finds the pseudoinverse of a rectangular matrix.

Basic examples

Find the pseudoinverse of an invertible matrix:
In[1]:=m=(1 | 2
3 | 4);
PseudoInverse[m]
Out[1]={{-2, 1}, {3/2, -1/2}}
The pseudoinverse is merely the inverse:
In[2]:=%==Inverse[m]
Out[2]=True
Find the pseudoinverse of a singular matrix:
In[1]:=m=(1 | 2 | 3
4 | 5 | 6
7 | 8 | 9);
p=PseudoInverse[m]
Out[1]={{-23/36, -1/6, 11/36}, {-1/18, 0, 1/18}, {19/36, 1/6, -7/36}}
The determinant of m is zero, so it does not have a true inverse:
In[2]:=Det[m]
Out[2]=0
For a pseudoinverse, both m.p.m = m and p.m.p = p:
In[3]:=m.p.m==m && p.m.p==p
Out[3]=True
However, in this particular case neither m.p nor p.m is an identity matrix:
In[4]:={m.p//MatrixForm, p.m//MatrixForm}
Out[4]={(5/6 | 1/3 | -1/6
1/3 | 1/3 | 1/3
-1/6 | 1/3 | 5/6), (5/6 | 1/3 | -1/6
1/3 | 1/3 | 1/3
-1/6 | 1/3 | 5/6)}
Find the pseudoinverse of a rectangular matrix:
In[1]:=m=(1 | 2 | 3
4 | 5 | 6);
p=PseudoInverse[m]
Out[1]={{-17/18, 4/9}, {-1/9, 1/9}, {13/18, -2/9}}
In this particular case, m.p is an identity matrix:
In[2]:=m.p
Out[2]={{1, 0}, {0, 1}}
However, p.m is not:
In[3]:=p.m
Out[3]={{5/6, 1/3, -1/6}, {1/3, 1/3, 1/3}, {-1/6, 1/3, 5/6}}

Option

Tolerance

Common option value

Tolerance | 0 | 10^(-15)

Attributes

NonThreadable | Protected

Relationships with other entities

Inverse | LeastSquares | Fit | SingularValueDecomposition | SingularValueList | DrazinInverse

Relationships with other entities

Typical ranks of usage in programs

1543rd most common (1 in 271000 symbols)

1159th most common (1 in 462000 symbols)

2253rd most common (1 in 57900 symbols)

History

introduced in Version 1 (June 1988)
last modified in Version 5 (June 2003)

Timeline

Timeline

Why Club Z!?

We're Awesome!

Vestibulum vitae aliquam nunc. Suspendisse mollis metus ac tellus egestas pharetra. Suspendisse at viverra purus. Pellentesque nec posuere ligula, eu congue leo. Integer vulputate tempor arcu. Vestibulum vulputate

We're Awesome!

Vestibulum vitae aliquam nunc. Suspendisse mollis metus ac tellus egestas pharetra. Suspendisse at viverra purus. Pellentesque nec posuere ligula, eu congue leo. Integer vulputate tempor arcu. Vestibulum vulputate Vestibulum vitae aliquam nunc. Suspendisse mollis metus ac tellus egestas pharetra. Suspendisse at viverra purus. Pellentesque nec posuere ligula, eu congue leo. Integer vulputate tempor arcu. Vestibulum vulputate

We're Awesome!

Vestibulum vitae aliquam nunc. Suspendisse mollis metus ac tellus egestas pharetra. Suspendisse at viverra purus. Pellentesque nec posuere ligula, eu congue leo. Integer vulputate tempor arcu. Vestibulum vulputate Vestibulum vitae aliquam nunc. Suspendisse mollis metus ac tellus egestas pharetra. Suspendisse at viverra purus. Pellentesque nec posuere ligula, eu congue leo. Integer vulputate tempor arcu. Vestibulum vulputate

We're Awesome!

Vestibulum vitae aliquam nunc. Suspendisse mollis metus ac tellus egestas pharetra. Suspendisse at viverra purus. Pellentesque nec posuere ligula, eu congue leo. Integer vulputate tempor arcu.

OUR PURPOSE

We tutor you in the subjects you need to help you progress.

Subjects We Tutor

What Is Domain In Math

What Is Domain In Math ‘

What Is Domain In Math

What Is Domain In Math ‘

Volume of a Sphere

Volume of a Sphere ‘

Area of a Triangle

Area of a Triangle ‘

Distance Formula

Distance Formula ‘

Distance Formula

Distance Formula ‘

Volume of a Cylinder

Volume of a Cylinder ‘

Find the right fit or it’s free.

We guarantee you’ll find the right tutor, or we’ll cover the first hour of your lesson.