This will display the locations serviced content. This will display the locations serviced content. This will display the locations serviced content.

Demo 1 Logo Demo 1 Logo Club Z!

In-Home & Online Tutoring

Get Math Help

Optional custom content. This can be any HTML containing text, images, links, etc... It will be displayed on all pages!

Bauer-Muir Transformation

Continued fraction definition

Given a sequence w = {w_n} of complex numbers, the Bauer-Muir transformation of a generalized continued fraction ξ of the form
ξ = b_0 + a_1/(b_1 + a_2/(b_2 + a_3/(b_3 + ...)))
with respect to w is the continued fraction ζ of the form
ζ = d_0 + continued fraction k _(m=1)^∞ c_m/d_m
whose canonical numerators C_n, respectively canonical denominators D_n, are defined by the recursion relations C_(-1) = 1, C_n = A_n + w_n A_(n - 1), D_(-1) = 0, and D_n = B_n + w_n B_(n - 1) for n = 1, 2, 3, .... Here, A_n/B_n denotes the canonical nth convergents of ξ.
One well-know result concerning the Bauer-Muir transformation is a characterization of its existence. In particular, given a generalized continued fraction ξ of the form stated above and a corresponding complex sequence w = {w_n}, the Bauer-Muir transformation of ξ with respect to w exists if and only if λ_n !=0 where here, λ_n = a_n - w_n(b_n + w_n)
for n = 1, 2, 3, .... Moreover, Lorentzen and Waadeland showed that if it exists, the Bauer-Muir transformation of ξ with respect to w has the form
ζ = b_0 + w_0 + λ_1/(b_1 + w_1 + c_2/(d_2 + c_3/(d_3 + ...)))
where c_n = a_(n - 1) q_(n - 1) and d_n = b_n + w_n - w_(n - 2) q_(n - 1) for q_n = λ_(n + 1)/λ_n, n = 1, 2, 3, .... More specific properties of the Bauer-Muir transformation have also been studied in relation to various other topics including but not limited to the Rogers-Ramanujan continued fraction.

Details

complex number | sequence | continued fraction | generalized continued fraction | continued fraction convergent | partial denominator | partial numerator

Timeline

Timeline

References

Thomas Muir. "A Theorem in Continuants." Philosophical Magazine 3, 137-138, 1877.
Thomas Muir. "Extension of a Theorem in Continuants with an Important Application." Philosophical Magazine 3, 360-366, 1877.
James McLaughlin and Nancy J. Wyshinski. "Real Numbers with Polynomial Continued Fraction Expansions." Acta Arithmetica 116, 63-79, 2005.
Lisa Jacobsen. "On the Bauer-Muir Transformation for Continued Fractions and its Applications." Journal of Mathematical Analysis and Applications 152, 496-514, 1990.
Mahmoud Jafari Shah Belahi, Sergei Khrushchev, and Agamirza EBashirov. "On Bauer-Muir Transform of Continued Fractions." International Journal of Number Theory 9, 321-332, 2012.
Lisa Lorentzen and Haakon Waadeland. Continued Fractions with Applications. pp. 76 and 77, 1992.
V.N. Singh. "Ramanujan's Continued Fraction and the Bauer-Muir Transformation." Proceedings of the Cambridge Philosophical Society 57, 76-79, 1961.

Why Club Z!?

We're Awesome!

Vestibulum vitae aliquam nunc. Suspendisse mollis metus ac tellus egestas pharetra. Suspendisse at viverra purus. Pellentesque nec posuere ligula, eu congue leo. Integer vulputate tempor arcu. Vestibulum vulputate

We're Awesome!

Vestibulum vitae aliquam nunc. Suspendisse mollis metus ac tellus egestas pharetra. Suspendisse at viverra purus. Pellentesque nec posuere ligula, eu congue leo. Integer vulputate tempor arcu. Vestibulum vulputate Vestibulum vitae aliquam nunc. Suspendisse mollis metus ac tellus egestas pharetra. Suspendisse at viverra purus. Pellentesque nec posuere ligula, eu congue leo. Integer vulputate tempor arcu. Vestibulum vulputate

We're Awesome!

Vestibulum vitae aliquam nunc. Suspendisse mollis metus ac tellus egestas pharetra. Suspendisse at viverra purus. Pellentesque nec posuere ligula, eu congue leo. Integer vulputate tempor arcu. Vestibulum vulputate Vestibulum vitae aliquam nunc. Suspendisse mollis metus ac tellus egestas pharetra. Suspendisse at viverra purus. Pellentesque nec posuere ligula, eu congue leo. Integer vulputate tempor arcu. Vestibulum vulputate

We're Awesome!

Vestibulum vitae aliquam nunc. Suspendisse mollis metus ac tellus egestas pharetra. Suspendisse at viverra purus. Pellentesque nec posuere ligula, eu congue leo. Integer vulputate tempor arcu.

OUR PURPOSE

We tutor you in the subjects you need to help you progress.

Subjects We Tutor

What Is Domain In Math

What Is Domain In Math ‘

What Is Domain In Math

What Is Domain In Math ‘

Volume of a Sphere

Volume of a Sphere ‘

Area of a Triangle

Area of a Triangle ‘

Distance Formula

Distance Formula ‘

Distance Formula

Distance Formula ‘

Volume of a Cylinder

Volume of a Cylinder ‘

Find the right fit or it’s free.

We guarantee you’ll find the right tutor, or we’ll cover the first hour of your lesson.